Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling.

نویسندگان

  • Guillermo Aguilar
  • Henry Vu
  • J Stuart Nelson
چکیده

High speed video imaging and an inverse heat conduction problem algorithm were used to observe and measure the effect of the angle between the nozzle and surface of a skin phantom on: (a) surface temperature; (b) heat flux q; and (c) overall heat extraction Q during cryogen spray cooling (CSC). A skin phantom containing a fast-response temperature sensor was sprayed with 50 ms cryogen spurts from a commercial nozzle placed 30 mm from the surface. The nozzle was systematically positioned at angles ranging from 5 to 90 degrees (perpendicular) with respect to the phantom surface. It is shown that angles as low as 15 have an insignificant impact on the surface temperature, q and Q. Only exaggerated angles of 5 show up to 10% lower q and 30% lower Q with respect to the maximal values measured when nozzles are aimed perpendicularly. This study proves that the slight angle that many commercial nozzles have does not affect significantly the CSC efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Cryogen Spray Cooling Parameters on the Heat Extraction Rate from a Sprayed Surface

Cryogen spray cooling is used to prevent epidermal thermal damage during port-wine stain laser therapy, despite the limited understanding of the fluid dynamics, thermodynamics, and heat transfer characteristics of cryogen sprays. In recent studies, it has been suggested that the heat flux through human skin could be increased by changing physical parameters such as nozzle-to-skin distance, nozz...

متن کامل

Sequential cryogen spraying for heat flux control at the skin surface

Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port -wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relative...

متن کامل

Effect of skin indentation on heat transfer during cryogen spray cooling.

BACKGROUND AND OBJECTIVES Cryogen spray cooling (CSC) is used to pre-cool the epidermis during dermatological laser procedures such as treatment of port wine stain (PWS) birthmarks, hair removal, and non-ablative photorejuvenation. Thus far, heat transfer studies related to CSC optimization have assumed a flat surface but clinical observation suggests that human skin indents due to the force of...

متن کامل

Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures.

Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T0) on cooling dynamics. Cryogen was delivered b...

متن کامل

Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery.

BACKGROUND AND OBJECTIVE Cryogen sprays are used for cooling human skin during various laser treatments. Since characteristics of such sprays have not been completely understood, the optimal atomizing nozzle design and operating conditions for cooling human skin remain to be determined. MATERIALS AND METHODS Two commercial cryogenic spray nozzles are characterized by imaging the sprays and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 49 10  شماره 

صفحات  -

تاریخ انتشار 2004